Axonal projections of Renshaw cells in the thoracic spinal cord
نویسندگان
چکیده
Renshaw cells are widely distributed in all segments of the spinal cord, but detailed morphological studies of these cells and their axonal branching patterns have only been made for lumbosacral segments. For these, a characteristic distribution of terminals was reported, including extensive collateralization within 1-2 mm of the soma, but then more restricted collaterals given off at intervals from the funicular axon. Previous authors have suggested that the projections close to the soma serve inhibition of motoneurons (known to be greatest for the motor nuclei providing the Renshaw cell excitation) but that the distant projections serve mainly the inhibition of other neurons. However, in thoracic segments, inhibition of motoneurons is known to occur over two to three segments (20-40 mm) from the presumed somatic locations of the Renshaw cells. Here, we report the first detailed morphological study of Renshaw cell axons outside the lumbosacral segments, which investigated whether this different distribution of motoneuron inhibition is reflected in a different pattern of Renshaw cell terminations. Four Renshaw cells in T7 or T8 segments were intracellularly labeled with neurobiotin in anesthetized cats and their axons traced for distances ≥6 mm from the somata. The only morphological difference detected within this distance in comparison with Renshaw cells in the lumbosacral cord was a minimal taper in the funicular axons, where in the lumbosacral cord this is pronounced. Patterns of termination were virtually identical to those in the lumbosacral segments, so we conclude that these patterns are unrelated to the pattern of motoneuronal inhibition.
منابع مشابه
P53: The Use of Fluoro-Gold for Retrograde Tracing of Cell Injection after Spinal Cord Injury: Improves Axonal Growth after Transplantation of Cells
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملA Brief Review of New Advances in the Treatment of Spinal Cord Injuries
Introduction: Spinal Cord Injuries (SCIs) are the main factor in the sensory disorders, which are caused by spinal cord strikes such as car accidents. Previously it was thought that SCIs could not be treated. However, new advances in neurology showed possible treatment to relieve pain in these patients. This article presents a brief review about physiology of spinal cord, kinds of injuries and ...
متن کاملRemyelination improvement after neurotrophic factors secreting cells transplantation in rat spinal cord injury
Objective(s): Neurotrophic factors secreting cells (NTS-SCs) may be a superior cell source for cell-based therapy in neurodegenerative diseases. NTS-SCs are able to secrete some neurotrophic Such as nerve growth factor and glia-derived neurotrophic factor. Our primary aim was to assess transplantation of neurotrophic factor secreting cells derived from human adipose-derived stem cells (hADSCs) ...
متن کاملCell Therapy in Spinal Cord Injury: a Mini- Reivew
Spinal cord injury (SCI) is a debilitating disease which leads to progressive functional damages. Because of limited axonal regeneration in the central nervous system, there is no or little recovery expected in the patients. Different cellular and molecular approaches were investigated in SCI animal models. Cellular transplantation of stem cells can potentially replace damaged tissue and provid...
متن کاملMechanisms of spinal cord injury regeneration in zebrafish: a systematic review
Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2013